1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
| import argparse import sys import random import logging import torch import numpy as np
from models.model_utils import get_embedding_matrix_and_vocab from src.classic_models.training.trainer import Trainer from src.classic_models.training.data_loader import load_and_cache_examples
sys.path.append("./")
def init_logger(): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, )
def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if not args.no_cuda and torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed)
def main(args): init_logger() set_seed(args)
vocab_list, vector_list = get_embedding_matrix_and_vocab( args.w2v_file, skip_first_line=True )
train_dataset = load_and_cache_examples(args, mode="train", vocab_list=vocab_list) dev_dataset = load_and_cache_examples(args, mode="dev", vocab_list=vocab_list) test_dataset = load_and_cache_examples(args, mode="test", vocab_list=vocab_list)
print("train_dataset: ", len(train_dataset)) print("dev_dataset: ", len(dev_dataset)) print("test_dataset: ", len(test_dataset))
trainer = Trainer(args, train_dataset, dev_dataset, test_dataset)
if args.do_train: trainer.train()
if args.do_eval: trainer.load_model() trainer.evaluate("dev")
trainer.evaluate("test")
""" python src/classic_models/training/main.py --data_dir ./datasets/phase_1/splits/fold_0 --label_file_level_1 datasets/phase_1/labels_level_1.txt --label_file_level_2 datasets/phase_1/labels_level_2.txt --task daguan --random_init_w2v --encoder lstm --aggregator max_pool --model_dir ./experiments/outputs/daguan/lstm_0815_1 --do_train --do_eval --train_batch_size 32 --num_train_epochs 50 --embeddings_learning_rate 6e-4 --learning_rate 20e-4 --classifier_learning_rate 20e-4 --warmup_steps 200 --max_seq_len 128 --hidden_dim 256 --embed_dim 256 --w2v_file resources/word2vec/dim_256/w2v.vectors --dropout_rate 0.2 --metric_key_for_early_stop "macro avg__f1-score__level_2" --logging_steps 400 --patience 5 """ if __name__ == "__main__": parser = argparse.ArgumentParser()
parser.add_argument( "--task", default="daguan", type=str, help="The name of the task to train" ) parser.add_argument( "--model_dir", default="/data2/code/DaguanFengxian/baseline/experiments/outputs/lstm_max_pool_wv256_epoch100", type=str, help="Path to save, load models", ) parser.add_argument( "--data_dir", default="/data2/nlpData/daguanfengxian/phase_1/splits/fold_0", type=str, help="The input dataload dir", ) parser.add_argument( "--label_file_level_1", default="/data2/nlpData/daguanfengxian/phase_1/labels_level_1.txt", type=str, help="Label file for level 1 label", ) parser.add_argument( "--label_file_level_2", default="/data2/nlpData/daguanfengxian/phase_1/labels_level_2.txt", type=str, help="Label file for level 2 label", )
parser.add_argument( "--seed", type=int, default=41, help="random seed for initialization" ) parser.add_argument( "--train_batch_size", default=32, type=int, help="Batch size for training." ) parser.add_argument( "--eval_batch_size", default=64, type=int, help="Batch size for evaluation." ) parser.add_argument( "--max_seq_len", default=128, type=int, help="The maximum total input sequence length after tokenization.", ) parser.add_argument( "--num_train_epochs", default=100.0, type=float, help="Total number of training epochs to perform.", ) parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer." ) parser.add_argument( "--max_grad_norm", default=1.0, type=float, help="Max gradient norm." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_steps", default=200, type=int, help="Linear warmup over warmup_steps." )
parser.add_argument( "--logging_steps", type=int, default=400, help="Log every X updates steps." ) parser.add_argument( "--save_steps", type=int, default=200, help="Save checkpoint every X updates steps.", )
parser.add_argument( "--do_train", action="store_true", help="Whether to run training." ) parser.add_argument( "--do_eval", action="store_true", help="Whether to run eval on the test set." ) parser.add_argument( "--no_cuda", action="store_true", help="Avoid using CUDA when available" ) parser.add_argument( "--random_init_w2v", action="store_true", help="是否直接随机初始化embedding; " )
parser.add_argument( "--encoder", default="lstm", type=str, help="Model type selected in the list: [textcnn, lstm] ", ) parser.add_argument( "--aggregator", default="max_pool", type=str, help="Model type selected in the list: [slf_attn_pool, max_pool, avg_pool, dr_pool, ] ", )
parser.add_argument( "--embed_dim", default=256, type=int, help="dims for embedding layer." ) parser.add_argument( "--hidden_dim", default=256, type=int, help="dims for intermediate layers." )
parser.add_argument( "--embeddings_learning_rate", default=6e-4, type=float, help="The learning rate for Adam.", ) parser.add_argument( "--learning_rate", default=20e-4, type=float, help="The learning rate for Adam." ) parser.add_argument( "--classifier_learning_rate", default=20e-4, type=float, help="The learning rate for Adam.", )
parser.add_argument( "--w2v_file", default="/data2/nlpData/daguanfengxian/word2vec/dim_256_sg_0_hs_1_epochs_30/w2v.vectors", type=str, help="path to pretrained word2vec file", )
parser.add_argument("--dropout_rate", default=0.2, type=float, help="dropout_rate ")
parser.add_argument( "--patience", default=5, type=int, help="patience for early stopping " ) parser.add_argument( "--metric_key_for_early_stop", default="macro avg__f1-score__level_2", type=str, help="metric name for early stopping ", )
parser.add_argument( "--prediction_output_file", default=None, type=str, help="file for writing out the predictions ", )
parser.add_argument( "--class_weights_level_1", default=None, type=str, help="class_weights, written in string like '1.0,2.0,2.0,5.0,200.0,300.0,400.0,500.0,500.0' ", ) parser.add_argument( "--class_weights_level_2", default=None, type=str, help="class_weights, written in string like '0.828,1.241,1.465,1.622,1.963,2.002,2.173,2.507,2.564,2.572,2.707,4.244,4.469,4.953,5.460,5.693,6.477,6.694,7.174,7.804,8.648,8.988,9.090,10.06,10.25,11.94,15.53,25.80,32.65,48.48,50.0,80.0,84.21,88.88,100.0' ", )
parser.add_argument("--use_focal_loss", default="True", help="use focal loss") parser.add_argument( "--focal_loss_gamma", default=2.0, type=float, help="gamma in focal loss" )
args = parser.parse_args()
main(args)
|