4_模型入口

第四步:模型入口

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- coding:utf-8 -*-
import argparse
import sys
import random
import logging
import torch
import numpy as np

from models.model_utils import get_embedding_matrix_and_vocab
from src.classic_models.training.trainer import Trainer
from src.classic_models.training.data_loader import load_and_cache_examples

sys.path.append("./")


def init_logger():
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)


def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)


def main(args):
init_logger()
set_seed(args)

# load vocab and w2v
vocab_list, vector_list = get_embedding_matrix_and_vocab(
args.w2v_file, skip_first_line=True
)

train_dataset = load_and_cache_examples(args, mode="train", vocab_list=vocab_list)
dev_dataset = load_and_cache_examples(args, mode="dev", vocab_list=vocab_list)
test_dataset = load_and_cache_examples(args, mode="test", vocab_list=vocab_list)

print("train_dataset: ", len(train_dataset))
print("dev_dataset: ", len(dev_dataset))
print("test_dataset: ", len(test_dataset))

trainer = Trainer(args, train_dataset, dev_dataset, test_dataset)

if args.do_train:
trainer.train()

if args.do_eval:
trainer.load_model()
trainer.evaluate("dev")

trainer.evaluate("test")


"""
python src/classic_models/training/main.py --data_dir ./datasets/phase_1/splits/fold_0
--label_file_level_1 datasets/phase_1/labels_level_1.txt
--label_file_level_2 datasets/phase_1/labels_level_2.txt
--task daguan --random_init_w2v --encoder lstm --aggregator max_pool
--model_dir ./experiments/outputs/daguan/lstm_0815_1 --do_train
--do_eval --train_batch_size 32 --num_train_epochs 50
--embeddings_learning_rate 6e-4 --learning_rate 20e-4
--classifier_learning_rate 20e-4 --warmup_steps 200 --max_seq_len 128
--hidden_dim 256 --embed_dim 256
--w2v_file resources/word2vec/dim_256/w2v.vectors
--dropout_rate 0.2 --metric_key_for_early_stop "macro avg__f1-score__level_2" --logging_steps 400 --patience 5
"""
if __name__ == "__main__":
parser = argparse.ArgumentParser()

parser.add_argument(
"--task", default="daguan", type=str, help="The name of the task to train"
)
parser.add_argument(
"--model_dir",
default="/data2/code/DaguanFengxian/baseline/experiments/outputs/lstm_max_pool_wv256_epoch100",
type=str,
help="Path to save, load models",
)
parser.add_argument(
"--data_dir",
default="/data2/nlpData/daguanfengxian/phase_1/splits/fold_0",
type=str,
help="The input dataload dir",
)
parser.add_argument(
"--label_file_level_1",
default="/data2/nlpData/daguanfengxian/phase_1/labels_level_1.txt",
type=str,
help="Label file for level 1 label",
)
parser.add_argument(
"--label_file_level_2",
default="/data2/nlpData/daguanfengxian/phase_1/labels_level_2.txt",
type=str,
help="Label file for level 2 label",
)

parser.add_argument(
"--seed", type=int, default=41, help="random seed for initialization"
)
parser.add_argument(
"--train_batch_size", default=32, type=int, help="Batch size for training."
)
parser.add_argument(
"--eval_batch_size", default=64, type=int, help="Batch size for evaluation."
)
parser.add_argument(
"--max_seq_len",
default=128,
type=int,
help="The maximum total input sequence length after tokenization.",
)
parser.add_argument(
"--num_train_epochs",
default=100.0,
type=float,
help="Total number of training epochs to perform.",
)
parser.add_argument(
"--weight_decay", default=0.0, type=float, help="Weight decay if we apply some."
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer."
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--max_steps",
default=-1,
type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
)
parser.add_argument(
"--warmup_steps", default=200, type=int, help="Linear warmup over warmup_steps."
)

parser.add_argument(
"--logging_steps", type=int, default=400, help="Log every X updates steps."
)
parser.add_argument(
"--save_steps",
type=int,
default=200,
help="Save checkpoint every X updates steps.",
)

parser.add_argument(
"--do_train", action="store_true", help="Whether to run training."
)
parser.add_argument(
"--do_eval", action="store_true", help="Whether to run eval on the test set."
)
parser.add_argument(
"--no_cuda", action="store_true", help="Avoid using CUDA when available"
)
# ----------------------------------------------------------------------
# embedding: 随机初始化;
parser.add_argument(
"--random_init_w2v", action="store_true", help="是否直接随机初始化embedding; "
)

parser.add_argument(
"--encoder",
default="lstm",
type=str,
help="Model type selected in the list: [textcnn, lstm] ",
)
parser.add_argument(
"--aggregator",
default="max_pool",
type=str,
help="Model type selected in the list: [slf_attn_pool, max_pool, avg_pool, dr_pool, ] ",
)

parser.add_argument(
"--embed_dim", default=256, type=int, help="dims for embedding layer."
)
parser.add_argument(
"--hidden_dim", default=256, type=int, help="dims for intermediate layers."
)

parser.add_argument(
"--embeddings_learning_rate",
default=6e-4,
type=float,
help="The learning rate for Adam.",
)
parser.add_argument(
"--learning_rate", default=20e-4, type=float, help="The learning rate for Adam."
)
parser.add_argument(
"--classifier_learning_rate",
default=20e-4,
type=float,
help="The learning rate for Adam.",
)

parser.add_argument(
"--w2v_file",
default="/data2/nlpData/daguanfengxian/word2vec/dim_256_sg_0_hs_1_epochs_30/w2v.vectors",
type=str,
help="path to pretrained word2vec file",
)

parser.add_argument("--dropout_rate", default=0.2, type=float, help="dropout_rate ")

parser.add_argument(
"--patience", default=5, type=int, help="patience for early stopping "
)
parser.add_argument(
"--metric_key_for_early_stop",
default="macro avg__f1-score__level_2",
type=str,
help="metric name for early stopping ",
)

# prediction_output_file
parser.add_argument(
"--prediction_output_file",
default=None,
type=str,
help="file for writing out the predictions ",
)

# 针对不均衡样本
parser.add_argument(
"--class_weights_level_1",
default=None,
type=str,
help="class_weights, written in string like '1.0,2.0,2.0,5.0,200.0,300.0,400.0,500.0,500.0' ",
)
#
parser.add_argument(
"--class_weights_level_2",
default=None,
type=str,
help="class_weights, written in string like '0.828,1.241,1.465,1.622,1.963,2.002,2.173,2.507,2.564,2.572,2.707,4.244,4.469,4.953,5.460,5.693,6.477,6.694,7.174,7.804,8.648,8.988,9.090,10.06,10.25,11.94,15.53,25.80,32.65,48.48,50.0,80.0,84.21,88.88,100.0' ",
)

parser.add_argument("--use_focal_loss", default="True", help="use focal loss")
parser.add_argument(
"--focal_loss_gamma", default=2.0, type=float, help="gamma in focal loss"
)

# ----------------------------------------------------------------------

args = parser.parse_args()

main(args)

这一部分非常需要展开来看,先从models/model_untils.py开始:

model_untils.py 存放功能组件函数

1. 加载w2v生成的embedding

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def get_embedding_matrix_and_vocab(w2v_file, skip_first_line=True, include_special_tokens=True):
"""
Construct embedding matrix
Args:
embed_dic : word-embedding dictionary
skip_first_line : 是否跳过第一行
Returns:
embedding_matrix: return embedding matrix (numpy)
embedding_matrix: return embedding matrix
"""
embedding_dim = None
# 先遍历一次,得到一个vocab list 和向量list
vocab_list = []
vector_list = []
with open(w2v_file, 'r', encoding='utf-8') as f_in:
for i, line in tqdm.tqdm(enumerate(f_in)):
if skip_first_line:
if i == 0:
continue
line = line.strip()
if not line:
continue

line = line.split(" ")
w_ = line[0]
vec_ = line[1:]
vec_ = [float(w.strip()) for w in vec_]

if embedding_dim == None:
embedding_dim = len(vec_)
else:
assert embedding_dim == len(vec_)

vocab_list.append(w_)
vector_list.append(vec_)

# 添加两个特殊字符:PAD和UNK
if include_special_tokens:
vocab_list = ['pad', 'unk'] + vocab_list
# 随机初始化两个向量
pad_vec_ = (np.random.rand(embedding_dim).astype(np.float32) * 0.05).tolist()
unk_vec_ = (np.random.rand(embedding_dim).astype(np.float32) * 0.05).tolist()
vector_list = [pad_vec_, unk_vec_] + vector_list
return vocab_list, vector_list

models/training/data_loader.py 部分

data_loader.py 加载数据的函数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def load_and_cache_examples(args, mode, vocab_list=None):
processor = processors[args.task](args)

cached_features_file = os.path.join(
args.data_dir, "cached_{}_{}_{}".format(mode, args.task, args.max_seq_len)
)

if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
if mode == "train":
examples = processor.get_examples("train")
elif mode == "dev":
examples = processor.get_examples("dev")
elif mode == "test":
examples = processor.get_examples("test")
else:
raise Exception("For mode, Only train, dev, test is available")

# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later
features = convert_examples_to_features(
examples, args.max_seq_len, vocab_list=vocab_list
)

logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)

# Convert to Tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor(
[f.attention_mask for f in features], dtype=torch.long
)
all_label_id_level_1s = torch.tensor(
[f.label_id_level_1 for f in features], dtype=torch.long
)
all_label_id_level_2s = torch.tensor(
[f.label_id_level_2 for f in features], dtype=torch.long
)

dataset = TensorDataset(
all_input_ids,
all_attention_mask,
all_label_id_level_1s,
all_label_id_level_2s,
)

return dataset
作者

Gavin

发布于

2022-04-01

更新于

2022-04-01

许可协议

CC BY-NC-SA 4.0

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×